DIY Spark Gap Transmitter

This article plunges you into the mesmerrizing world of early radio technology through the assembly and analysis of a DIY spark gap transmitter. This project offers a practical insight into the fascinating dynamics of damped harmonic oscillators and explains charasteristics such the logarithmic decrement, decay rate, damping factor, q factor, and beyond. Prepare to spark […]
Continue reading…

 

Diplexer with integrated Bias-T (Triplexer) for QO-100 and X-band microwave reception using LNBs

This article shows how to build a simple Triplexer (Diplexer plus integrated DC Bias-T) for use with commercial TV LNBs for QO-100 or X-band microwave experiments. Introduction When using modified, commercial LNBs for reception of the QO-100 amateur radio satellite or X-band microwave experiments, it is necessary to pass a clock-reference signal, a DC supply […]
Continue reading…

 

Critical length of a PCB trace and when to treat it as a transmission line

Ideally, the impedance of PCB traces should be matched to the load and source impedances. This becomes especially important in high-frequency and high-speed digital PCB designs. Various rules of thumb are available to determine the critical length at which a PCB trace should be treated as a transmission line. Below this critical length, an impedance […]
Continue reading…

 

Universal Clock Translator using Renesas VersaClock 6E Devices

Due to the popularity of the QO-100 geostationary amateur radio communication satellite, precision GPS reference frequency sources (GPSDO) are becoming more and more common in home labs. The desire to derive different, fixed frequency signals from a GPSDO has similarly been increasing as different devices requiere different reference clocks with different frequencies. Therefore, this article […]
Continue reading…

 

LNB Modification for 10 GHz QO-100 Satellite Reception

This article shows how to modify an inexpensive LNB to accept an external LO-reference signal in order to be used as a K-band downconverter for QO-100 (Qatar Es’hail 2) amateur radio sattelite reception, radio astronomy or similar K-band experiments. This article is a shortened version of a scientific paper that I wrote as the lead […]
Continue reading…